

Optical Manufacturing Tolerance Chart	
Attribute	Manufacturing Limits
Diameter	+0.000/-0.010 mm
Center Thickness	± 0.010 mm
Sag	±0.010 mm
Clear Aperture*	Up to 99%
Radius (larger of two)	±0.025% or 1 fringe
Irregularity – Interferometer	0.05 waves PV
Irregularity – Profilometer	1 fringe PV
Irregularity – CMM	±1 micron PV
Wedge Lens, ETD	0.001 mm
Scratch Dig (ISO 10110-7:2017) (Mil-Spec 13830B)	10-5
Surface Roughness**	5 Å rms
Domes Concentricity	5 microns

(Larger sizes and tighter tolerances available)

* Standard clear aperture 90%

** Aspheres are 20 Å rms

Contact: sales@vertexoptics.com for more information.

An aspheric lens is a type of lens whose surface profiles are not portions of a sphere or cylinder. Unlike traditional spherical lenses, aspheric lenses have a more complex surface profile that gradually changes curvature from the center to the edge. Most axial symmetric aspheres are defined by the following equation:

$$z = \frac{cS^2}{1 + [1 - (K + 1)c^2S^2]^{1/2}} + A_1S^4 + A_2S^6 + A_3S^8 + A_4S^{10},$$

z is the height change (or sag), S is the distance from the center of the optic, c (or curvature) is equal to 1/ radius of curvature, and A_1 , A_2 , A_3 , etc. are the aspheric deformation constants.

Where the conic constant (K) changes to produce the following shapes:

Hyperbola K < -1, Parabola K = -1, Ellipse -1 < K < 0, Sphere K = 0, Oblate Spheroid K > 0

<u>Note</u>: If both K and A_i are zero, the equation represents a spherical surface.